04 | 复杂度分析(下):浅析最好、最坏、平均、均摊时间复杂度

上一节,我们讲了复杂度的大 O 表示法和几个分析技巧,还举了一些常见复杂度分析的例子,比如 O(1)、O(logn)、O(n)、O(nlogn) 复杂度分析。掌握了这些内容,对于复杂度分析这个知识点,你已经可以到及格线了。但是,我想你肯定不会满足于此。

今天我会继续给你讲四个复杂度分析方面的知识点,最好情况时间复杂度(best case time complexity)、最坏情况时间复杂度(worst case time complexity)、平均情况时间复杂度(average case time complexity)、均摊时间复杂度(amortized time complexity)。如果这几个概念你都能掌握,那对你来说,复杂度分析这部分内容就没什么大问题了。

……………………………………………………………………………………………………………………………………..

// n表示数组array的长度
int find(int[] array, int n, int x) {
int i = 0;
int pos = -1;
for (; i < n; ++i) {
if (array[i] == x) {
pos = i;
break;
}
}
return pos;
}

最好情况时间复杂度就如名字所示,如果数组的第一个数就是我们想要查找的树,就不用进行遍历查找剩下的N-1种情况了,这时候时间复杂度为O(1);如果最后一个数才是我们要查找的,也就是说需要遍历N次 时间复杂度为O(n);

顾名思义,最好情况时间复杂度就是,在最理想的情况下,执行这段代码的时间复杂度。就像我们刚刚讲到的,在最理想的情况下,要查找的变量 x 正好是数组的第一个元素,这个时候对应的时间复杂度就是最好情况时间复杂度。

最坏情况时间复杂度就是,在最糟糕的情况下,执行这段代码的时间复杂度。就像刚举的那个例子,如果数组中没有要查找的变量 x,我们需要把整个数组都遍历一遍才行,所以这种最糟糕情况下对应的时间复杂度就是最坏情况时间复杂度。

要查找的变量 x 在数组中的位置,有 n+1 种情况:在数组的 0~n-1 位置中和不在数组中。我们把每种情况下,查找需要遍历的元素个数累加起来,然后再除以 n+1,就可以得到需要遍历的元素个数的平均值,即:

刚这个公式简化之后,得到的平均时间复杂度就是 O(n)。

 

均摊时间复杂度

均摊时间复杂度就是一种特殊的平均时间复杂度

 

 

作者: 王药酒

药 酒 本 酒 | 备 考 事 业 编 中